
Architectural Applications of Complex Adaptive Systems
Cory Clarke and Phillip Anzalone
XO (eXtended Office)

Abstract

This paper presents methods and case studies of approaching architectural design
and fabrication utilizing Complex Adaptive Systems (CASs). These case studies
and observations described here are findings from a continuing body of research
investigating applications of computational systems to architectural practice. CASs
are computational mechanisms from the computer science field of Artificial Life
that provide frameworks for managing large numbers of elements and their inter-
relationships. The ability of the CAS to handle complexity at a scale unavailable
through non-digital means provides new ways of approaching architectural design,
fabrication and practice.

1 INTRODUCTION

This paper documents findings from investigations of the application of Complex
Adaptive Systems (CASs) to the practice of architecture. CASs are computational
mechanisms from the computer science field of Artificial Life that provide frameworks
for managing large numbers of elements and their inter-relationships. Some
algorithms that are classified as CASs are Cellular Automata, Lindemayer Systems,
Turing Machines and Flocking algorithms. There are many potential applications for
these systems in the architectural design process:

• Tools for the automated design of large scale buildings and urban projects;

• Techniques for the design of serialized buildings (e.g. mass housing, franchise
buildings, pre-fabricated construction) that are contextually-sensitive and
differentiated;

• Platforms for roboticized self-assembling and self-adjusting buildings;

• Methods for designing adaptable buildings with redundant structures with
the ability to more successfully withstand damage and catastrophic events.

Critical to our investigation is the marriage of CASs with suitable geometric and
structural systems. Complex computational systems have found little application in
contemporary architectural practice because their effective realization is often not
possible with traditional geometries, such as the Cartesian coordinate system, or

traditional structural methods, such as trabeated construction. In parallel with our
investigation of applications of CASs to architectural design has been the development
of formal and structural systems with geometries to match the CAS morphology.

This paper describes:

• The concept of CASs and their presentation in architectural terms, addressing
ideas of context, site, program and form;

• Development of structural and construction systems that provide a means of
constructing results from CAS based design systems;

• Case studies of the application of CASs in architectural design.

2 CAS CONCEPTS IN ARCHITECTURAL DESIGN

CASs are a class of dynamic systems from the field of Artificial Life. These systems
typically involve sets of discrete elements that change state (typically visualized
by changes in color), based on the iteration of a simple set of deterministic rules
(Wuensche, Lesser 1992). The elements’ states change as a function of their current
state and the rules, producing an unpredictable, complex global behavior pattern.

A CAS changes its state based on the rules of the system. These rules are applied to
the current state of every element in the system to calculate each element’s new state.
Despite the fact that these systems’ behaviors are defined by completely deterministic
rules, the behaviors of these systems (with sufficient elements in play) are so complex
that they cannot be predicted. Since the new state of the system is determined by the
current state, different initial states of a CAS can foster entirely different emergent
behavior. To change the behavior of the system a CAS can merely be started with new
initial state.

Different initial states in CASs will lead to different global behavior and patterns. In
this way the interaction of the elements within a CAS can be thought of as a ‘calculator’
(Neumann, 1966), computing outputs based on inputs. This capacity to derive results
from a complex matrix of inputs is an obvious analog to the design process – which
must take the complex matrix of requirements – program, site and structure – and
translate them into an architectural outcome.

There are several properties shared by CASs upon which we have focused our research.
The properties listed below have provided us with a means of linking the processes and

behaviors of CASs to the design and production of architecture. While these properties
may not belong to all CASs, they provide a list of traits that can be combined and
exploited in the production of architectural design tools. The properties are discrete
composition, algorithmic relationships, exogenous control and scalability.

2.1 Discrete Composition

The underlying substructures of CASs are discrete matrices of elements, treated as
independent entities, operating in parallel. Despite the discrete nature of these systems
at the local scale, they are able to exhibit global behaviors with varying degrees of
continuity. The trait of having a discontinuous substructure, but varying continuity
at the level of superstructure, is one of the behaviors that make CASs suitable for
translation into architecture. This trait provides an analog to the way in which
architecture is produced; assembled from discrete elements – either programmatic
(rooms and zones) or structural (beams and columns) – that define spaces with
varying degrees of continuity (e.g. spatial, programmatic, acoustical, environmental).

2.2 Algorithmic Relationships

The behavior of a CAS is prescribed by sets of rules and algorithms that dictate
the relationships between elements within the system. The relationships between
elements in a CAS are iteratively re-evaluated based on these rules, providing the
means for the system to adapt to internal and external changes. The clear definition of
relationships between elements, and the reiteration of those relational rules over time,
finds an analog in the design process – where design intentions are described in terms
of relationships (privacy, lighting, proximity), and the final product emerges from the
continual reiteration and refinement of these relationships.

A specific example of this can be seen in the computational algorithm described as
flocking. Basic flocking systems (Figure 1) define a set of desired relationships between
elements in a flock (such as ideal distance between elements and preferred position
relative to other elements) and attempt to maintain these relationships by continually
readjusting the positions of each element (Reynolds, 1987). When the rules of proximity
and position are applied to a group of elements they exhibit complex adaptive behavior
similar to a flock of birds. This simple set of rules of proximity and position can find
application in architecture, for example, as rules for positioning of programmatic or
structural elements.

2.3 Exogenous Control (Contextual Awareness)

Along with the ideas of internal constraints, many CASs have the capacity to react to
exogenous control, which in architectural terms can provide mechanisms for contextual

Figure 1 - Paths described by the motion
of flocking particles .

and environmental awareness, and influencing the system to incorporate additional
design intentions. CASs have two primary mechanisms for reacting to environment
and context – initial state definition and avoidance behavior.

Since all CASs operate on a deterministic set of rules, the initial state of the system
ultimately determines its outcome. Thought of in this way, the outcome of a CAS can
be seen as a registration of the rules upon a particular initial state. With a simple
CAS, such as Cellular Automata, the entire range of possible outcomes for every rule
from a single initial state can be mapped (Wuench, Lesser 1992). In an architectural
application the initial state can be defined in terms of the environment, and the
behavior of the CAS would be a direct expression of the relational rules of the system
within that environment.

Along with the ability to register the initial state of their environment, CASs can react
to external change via mechanisms such as avoidance behavior. This behavior is
comprised of basic mechanisms that monitor the incremental growth of a CAS for
collisions with objects or fields in the environment and provide for additional reactions.
If elements in the system are currently on a collision course the monitoring mechanism
signals for new behavioral rules to be invoked that react to the potential collision.

The obvious architectural implication of the collision detection and avoidance logic
is to install the system with an awareness of surrounding buildings and landscape.
However, the behavior can also be applied to more abstractly zoned volumes within the
systems surrounding context as well. The growth of a system could respond to zoning
envelopes, acoustical envelopes, sun and shade volumes, view corridors, program
areas, and any other abstract constraints that can be represented volumetrically.

Collision detection can be further extended as a mechanism for control by inverting the
logic of avoidance behavior so that the collision detection mechanism can be used as
a tool for searching out attractive areas of an architectural context. If the avoidance
behavior were to be changed to tend towards potential collision instead of away, the
morphological tendencies of the CAS will grow towards specific areas in a site that are
designated as desirable. Furthermore the volumes of desirability, and undesirability,
can be weighted in influence to produce a multivalent map of context.

2.4 Scalability

Many CASs exhibit a fractal behavior - the behavior of a small number of elements is
congruent to the same system with exponentially more components. This scalability
of behavior has two benefits to the study and implementation within architectural
practice. The first is one of study and testing; since the behavior of a large system

is similar to that of a small system, methods for design can be modeled in a limited
capacity and still translate to the larger scale of a building or urban project. The
second benefit of the scalability of CASs is their potential to be nested fractally. Their
scalability makes them essentially scale-less; a particular set of rules that functions
well as a global organization system could be used at the scale of an urban project,
while each ‘cell’ could in turn be filled with a smaller version of a CAS with a detailed
behavior at the scale of building or dwelling unit.

3 STRUCTURAL SYSTEMS

The characteristics of the organizational strategy outlined above, and the diverse range
of possible complex forms that may result, require a structural solution with similar
geometric and algorithmic traits. Our research focused upon the three-dimensional
differential space-truss.

The traditional space-truss is a lattice structure of standard elements, typically leading
to architecture of regular geometrical forms, as in the geodetic domes of Buckminster
Fuller and projects such as I.M. Pei’s Javits Convention Center in New York. The
traditional space-truss employs standard elements because of constraints of design,
analysis and fabrication – constraints now surmountable through computer-based
techniques. The differential space-truss uses non-standard elements; by allowing
each element to be unique it can take on complex three-dimensional curvilinear form
as well as basic linear geometry.

During our research we built and tested several scale models of three-dimensional
differential space-trusses with non-uniform elements (Figure 2). The manufacturing
of the structural elements requires the use of Computer Numerically Controlled (CNC)
fabrication techniques. The specific biases and limitations of these construction
methods can be built into the relational rules of the CASs as further means of control.
The differential space-truss has three major traits that match many of the behaviors
and properties of CASs: discrete composition, lattice geometry and scalability.

3.1 Discrete Elements

Space-truss systems are comprised of two basic components, linear struts and
connecting nodes; through the manipulation of these two types of elements the system
can yield a diverse range of complex three-dimensional forms. The fluid nature in
which a space-truss can transition between curvilinear form and linear geometry
is similar to that of monolithic structural systems such as cast concrete, yet it is
constructed from repetitive discrete elements. Its range of formal expression, coupled

Figure 2 - Fabricated prototype of
differential space-truss.

with its discrete composition, makes the space-truss an ideal structural expression for
the organizational strategies of CASs.

3.2 Lattice Configuration

The lattice configuration of a space-truss, a continuous network of nodes and struts,
allows it to effectively behave as a monolithic system; load forces passing through
the system on a global scale as if it were a uniform structure. The overall structural
capacity emerges from the configuration of the discrete elements and their inter-
connections, mimicking almost identically the emergent behavior of the coordinated
elements in the CAS.

3.3 Scalability / Micro-scale Components

Structurally, the space-truss has no predetermined scale, capable of functioning
equally with struts the length of 10 meters as with struts only 10 centimeters. The
economies of scale behind traditional construction have led to the implementation
of space-trusses only at a large scale, a single strut commonly measuring more
than a meter in size. The use of CASs, which are capable of managing innumerable
discrete elements, especially if they are coupled with CNC fabrication techniques and
roboticized assembly methods, can allow the space-truss to be implemented at a finer
scale, giving more adaptability and greater range of formal expression.

4 Case Study 1: one-dimensional Cellular Automata

We have performed several case studies applying CASs to architectural form; two
of which are documented in this paper. Both case studies described here employ
algorithms that are categorized in a subclass of CAS called Cellular Automata. The
two specific examples are one-dimensional Cellular Automata (Wolfram, 2002) and
an adaptation of Conway’s Game of Life (Gardner, 1970). These studies focused on
investigating ways of formally manifesting the behavior of the CASs via appropriate
geometric systems and the differential space-truss structure.

The case studies were produced by writing custom software plugins for Maxon’s
Cinema4D and Alias|Wavefront’s Maya. The software plugins used the CAS rules
to produce three-dimensional surfaces and lattice structures. The software was
developed to generate forms that are able to be easily realized using CNC fabrication
techniques.

4.1 Cellular Automata Rules

The structure of a Cellular Automata is a one-dimensional array of elements with
variable states – typically represented as a line of black and white squares. The array
is manipulated via a set of rules; in the studies done here we used 3-Neighbor Cellular
Automata, which have only eight rules. The rules govern how the states of the individual
elements change over time. For each discrete moment in time, the state of each
element in the system is analyzed and changed based on the rules. An example of a set
of rules is show in Figure 3. Typically the behavior of a Cellular Automata is visualized
as a time-series plot, showing snapshots of the state of the one-dimensional array of
elements at sequential moments in time all together as a two-dimensional grid.

4.2 Outcome

In translating the behavior of the one-dimensional Cellular Automata system to
architectural design, the behavior of the system was treated as a series of instructions
for growth in three-dimensions. Instead of interpreting the states of the elements
within the Cellular Automata as white and black, the states mapped to angular
directions for the development of a space-truss lattice.

Forms were generated by incrementally growing a space-truss structure where each
new element within the structure was placed relative to the previous element based
on the changing state of the Cellular Automata system. We discovered the forms with
the most potential for architectural application resulted from the coupling of changes
in state within the Cellular Automata and changes in angle within the growth of the
space-truss structure. As each element was added to the truss, the angle of the new
element relative to the previous element was dictated by the current state of the
Cellular Automata system. A Cellular Automata pattern being translated to different
surface configurations through the association between Cellular Automata states and
various angles is illustrated in Figure 4.

The Cellular Automata system was further studied by augmenting it with rules for
exogenous responsiveness and tectonic/structural intelligence. An additional layer of
behavior was added to the basic behaviors employed in the previous examples, giving
it collision detection so it could respond to boundaries and environmental constraints.
Figure 5 illustrates the results of the collision detection in a simple formal study.

Along with the layer of collision detection and responsiveness a third system of
behaviors was added to install proximity detection between elements. Each element
within the Cellular Automata system was given additional instructions that controlled
its distance relative to it neighbors during the generation of the lattice structure
(Figure 5). This behavior attempted to keep the spacing between elements at an

optimal distance, one that corresponded to an optimal relative length for a structural
element in a differential space-truss. The mechanisms employed in maintaining
optimal distance is similar to those used in the flocking behavior described earlier.

A part of the research we developed a software plugin for Maxon’s Cinema4D to
generate structures based on the parameters described above. The plugin has two
major components, one titled ‘Behavior’, for controlling the Cellular Automata behavior
and a second titled ‘Renderer’ for controlling the interpretation of that behavior into
form. The two components are reflected in the interface shown in Figures 6 and 7
below. The Cellular Automata rules, iterations and initial state as well as its flocking
behavior are all controlled via the Behavior interface. The Renderer portion allows
a designer to associate the different states of the Cellular Automata with different
angular directions for the interpretation into form, as shown in figure 4. The collision
detection and avoidance behavior is integrated into the system so that any shapes
defined within the modeling environment are treated as context and avoided as the
Cellular Automata structure generates itself. The plugin generates both a surface
model as well as a structure of lines and curves; these curves can provide a basis for
the generation of laser cut structural models.

We ran several tests of hypothetical scenarios, deploying Cellular Automata systems
with specific rule sets within different urban and rural contexts. Figure 8 shows the
results of one of these tests. In this test a pair of Cellular Automata, tuned towards
different degrees of transparency and opacity, were deployed in an urban infill lot.
The Cellular Automata plugin we developed generates ruled surfaces, which can be
optimized for fabrication with linear tools such as laser cutters. Generating surfaces
with a rule-based system that incorporates requirements of the fabrication method
is similar to that employed in the Morphogenetic Surface Structures project from the
Emergent Design Group (Testa, O’Reilly, 1999).

5 CASE STUDY 2: Conway’s Game of Life Variant

5.1 System Rules

Conway’s Game of Life is a two-dimensional Cellular Automata a matrix of elements
with variable states in two directions. The matrix of elements is typically arranged as a
grid of black and white squares, and a set of four rules is used to change the states of
the elements at each discrete moment in time. The rules for changing each element are,
as with one-dimensional Cellular Automata, based on the immediate context of each
element. However, since there are many more possible configurations of neighboring
elements than in a one-dimensional Cellular Automata, the rules can operate on a

Figure 6 & 7 – Interface components
for Behavior and Renderer control in
the Cellular Automata system

Figure 8 - Deployment of a
Cellular Automata architectural
design system in an urban infill
context

more qualitative level. For instance, the typical rules describe conditions of loneliness,
over-population, stasis and reproduction. These rules are shown in Figure 9.

To adapt Conway’s Game of Life for architectural application, we derived a variant of
the rules and system that works on a three-dimensional matrix of elements. Figure 10
shows how the Game of Life can be thought of as a three-dimensional system. In this
case study we extended the system of Conway’s Game of Life so that its implementation
is not limited to a Cartesian spatial matrix so it can produce spatial conditions that
are complex and more specific to the structural morphology of the differential space-
truss.

5.2 Outcome

In experiments with our variant of Conway’s Game of Life (Conway Variant) we sought
to make the ideas of contextual awareness and structural/tectonic logic explored in the
one-dimensional Cellular Automata more central to the generation of form. The basic
rules of the system, those of loneliness, overcrowding and reproduction, integrate
contextual awareness, without layering on additional behavioral logic as was done
in the Cellular Automata studies. The architectural context is described in the same
manner as the systems elements, allowing the growth of the elements to react to
boundaries and environmental constraints. The forms generated by the system also
act as contextual constraints for the next phase of growth, allowing the system to limit
its growth in a more controlled manner.

To embed structural and formal logic into the system, studies were made in using
space-filling geometries other than the typical 90-degree grid (Nooshin, H., Disney, P.
L., and Champion, O. C, 1997). With one-dimensional Cellular Automata and Conway’s
Game of Life, the system is typically represented as a grid of square tiles. In moving
into three dimensions it is simple to mimic the behavior of these systems by extending
those square tiles into three dimensions as a matrix of cubes, giving extremely limited
formal possibilities and imparting no structural logic to the system. Instead, we looked
towards more complex and variable space-filling geometries, such as the geometry of
cells and crystals (Pearce, 1990), that matched more effectively the formal logic of the
differential space-truss. Coupling different space-filling geometries with variants on
the rules of Conway’s Game of Life we were able to produce a diverse range of possible
forms including complex spatial and structural configurations.

As with the Cellular Automata case study, we developed a custom plugin for the
Conway Variant case study that would generate sample structures. The plugin
provides an interface for controlling all the aspects of our variant of Conway’s Game
of Life rules such as ‘reproduction’ and ‘overcrowding’. The plugin interface is pictured
in Figure 11. Instead of operating within a simple Cartesian grid, as shown in Figure
10, the system grows based on a spatial morphology of a differential space-truss.

As elements within the Game of Life, the plugin uses ‘nodes’ within a space-truss.
However, instead of being located within a fixed three-dimensional grid the position
and location of these nodes are determined by the ‘angle’ and ‘length’ parameters of
the plugin. As the system grows, each node in the structure spawns new nodes and
struts, or ‘kills’ them off, based on the rules of reproduction and overcrowding from our
variant on the Game of Life.

Figure 12 shows a highly constrained Conway Variant system deployed with constraints
that limit its growth to a primarily vertical direction. The rules and space-filling
geometry used produce a variation on a typical office tower structure with much more
structural redundancy and spatial variety at the scale of the individual floor and unit.

Figure 13 shows the same system used to produce the tower, but deployed with a
different initial context and geometric structure. With these different parameters the
system produces a series of punctured domes with varying degrees of enclosure.

6 FUTURE WORK

We intend to further extend the rudimentary explorations in Autonomic Architecture
along several different trajectories.

6.1 Geometry

The use of various space-filling geometries in Conway Variant produced a range of
interesting formal results, opening up several research opportunities. As one portion
of our continued research we propose to investigate more rigorously the logic of these
different spatial patterns and their formal range. We also hope to investigate these
space-filling geometries combinatorially, testing applications of combinations of the
geometries within a single structure to produce structures supportive of different
programs and uses.

The association between ideas of structure and geometry in our case studies has
remained primarily formal; in further investigations we plan to investigate “real-
world” collaborative applications with structural engineers and architectural firms.
There has been interest expressed within the community of practicing architects to
utilize our current prototype for designing building components.

6.2 Fabrication

Figure 11 - Software interface for
generating Game of Life structures

Figure 12 - Tower generated
with an architectural
design algorithm based on
Conwayʼs Game of Life.

Figure 13 - Structure generated
within a landscape using a design
algorithm based on Conwayʼs Game
of Life.

The application of CASs in the manner we propose offers the ability to control the
size and scale of every architectural element within a structure with mathematical
precision, as it is designed. This degree of control would necessitate further research
in the coupling of Computer Numerically Controlled fabrication techniques with the
morphology of the architectural design system. As part of our continued research we
intend to develop fabrication techniques for a differential space-frame truss that
would allow the limitations of the fabrication and construction process to be added as
control parameters to the design system.

6.3 Algorithms

The CASs explored in our case studies, one-dimensional Cellular Automata and Conway
Variant, use some of the simplest of the CAS algorithms. In further research we intend
to pursue additional CAS algorithms based on the following criteria:

The CAS systems we have employed so far use only two states within their organizational
structure, other algorithms such as Turing Machines and 3-state Cellular Automata
are capable of supporting multiple states. This multi-state structure could provide for
additional behaviors relating to program, site, and aesthetics – factors that have not
yet been addressed in case studies.

The systems used in the case studies thus far have had limited capacity for testing
local conditions. For elements of both the one-dimensional Cellular Automata and
the Conway Variant behaviors were based solely upon the state of each element’s
immediate neighbors. We propose to pursue methods of building behaviors based on
an awareness of more than the immediate proximity, using methods similar to those
developed for Neural Networks.

The environment and context of the CASs in the case studies have been described
as fixed, not changing over time. To better simulate real-world applications of these
systems, as well as to encourage evolution within the algorithms, we propose to
pursue methods of constructing and testing these systems in continually varying
environments.

BIBLIOGRAPHY

Books

Coxeter, H. S. M. Regular Polytopes. New York: Dover Publications, Inc., 1973.

Hybers, P. “The Polyhedral World” In Beyond the cube: The Architecture of Spaceframes
and Polyhedra., edited by J. F. Gabriel. New York: John Wiley & Sons, Inc.,
1997.

Neumann, J von and Arthur W. Burks. Theory of Self-reproducing Automata. Urbana, Ill:
University of Illinois Press, 1966.

Nooshin, H., Disney, P. L., and Champion, O. C. “Computer-Aided Processing of
Polyhedric Configurations” In Beyond the cube: The Architecture of Spaceframes
and Polyhedra. edited by J. F. Gabriel. New York: John Wiley & Sons, Inc., 1997.

Pearce, Peter. Structure in nature is a Strategy for Design. Cambridge, MA: MIT Press,
1990.

Wuensche, Andrew and Mike Lesser. The Global Dynamics of Cellular Automata. New
York: Addison-Welsey, 1992.

Wolfram, Stephen. A New Kind of Science. New York: Wolfram Media, Inc., 2002.

Articles

Gardner, Martin. “ MATHEMATICAL GAMES: The fantastic combinations of John
Conway’s new solitaire game ‘life’”. Scientific American 223 (October 1970):
120-123.

Reynolds, C. W. “Flocks, Herds, and Schools: A Distributed Behavioral Model”. Computer
Graphics, 21(4) (SIGGRAPH ‘87 Conference Proceedings) 25-34.

Testa, P. and O’Reilly, U. “MoSS: Morphogenic Surface Structures”. Greenwich 2000
Conference Proceedings. London: Interscience Communications.

