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Abstract

This paper presents methods and case studies of approaching architectural design 
and fabrication utilizing Complex Adaptive Systems (CASs). These case studies 
and observations described here are findings from a continuing body of research 
investigating applications of computational systems to architectural practice.  CASs 
are computational mechanisms from the computer science field of Artificial Life 
that provide frameworks for managing large numbers of elements and their inter-
relationships. The ability of the CAS to handle complexity at a scale unavailable 
through non-digital means provides new ways of approaching architectural design, 
fabrication and practice.

1 INTRODUCTION

This paper documents findings from investigations of the application of Complex 
Adaptive Systems (CASs) to the practice of architecture.  CASs are computational 
mechanisms from the computer science field of Artificial Life that provide frameworks 
for managing large numbers of elements and their inter-relationships. Some 
algorithms that are classified as CASs are Cellular Automata, Lindemayer Systems, 
Turing Machines and Flocking algorithms. There are many potential applications for 
these systems in the architectural design process:

• Tools for the automated design of large scale buildings and urban projects;

• Techniques for the design of serialized buildings (e.g. mass housing, franchise 
buildings, pre-fabricated construction) that are contextually-sensitive and 
differentiated;

• Platforms for roboticized self-assembling and self-adjusting buildings;

• Methods for designing adaptable buildings with redundant structures with 
the ability to more successfully withstand damage and catastrophic events.

Critical to our investigation is the marriage of CASs with suitable geometric and 
structural systems. Complex computational systems have found little application in 
contemporary architectural practice because their effective realization is often not 
possible with traditional geometries, such as the Cartesian coordinate system, or 



traditional structural methods, such as trabeated construction. In parallel with our 
investigation of applications of CASs to architectural design has been the development 
of formal and structural systems with geometries to match the CAS morphology.

This paper describes:

• The concept of CASs and their presentation in architectural terms, addressing 
ideas of context, site, program and form;

• Development of structural and construction systems that provide a means of 
constructing results from CAS based design systems;

• Case studies of the application of CASs in architectural design.

2 CAS CONCEPTS IN ARCHITECTURAL DESIGN

CASs are a class of dynamic systems from the field of Artificial Life. These systems 
typically involve sets of discrete elements that change state (typically visualized 
by changes in color), based on the iteration of a simple set of deterministic rules 
(Wuensche, Lesser 1992). The elements’ states change as a function of their current 
state and the rules, producing an unpredictable, complex global behavior pattern. 

A CAS changes its state based on the rules of the system. These rules are applied to 
the current state of every element in the system to calculate each element’s new state. 
Despite the fact that these systems’ behaviors are defined by completely deterministic 
rules, the behaviors of these systems (with sufficient elements in play) are so complex 
that they cannot be predicted. Since the new state of the system is determined by the 
current state, different initial states of a CAS can foster entirely different emergent 
behavior. To change the behavior of the system a CAS can merely be started with new 
initial state.

Different initial states in CASs will lead to different global behavior and patterns.  In 
this way the interaction of the elements within a CAS can be thought of as a ‘calculator’ 
(Neumann, 1966), computing outputs based on inputs. This capacity to derive results 
from a complex matrix of inputs is an obvious analog to the design process – which 
must take the complex matrix of requirements – program, site and structure – and 
translate them into an architectural outcome.

There are several properties shared by CASs upon which we have focused our research. 
The properties listed below have provided us with a means of linking the processes and 



behaviors of CASs to the design and production of architecture. While these properties 
may not belong to all CASs, they provide a list of traits that can be combined and 
exploited in the production of architectural design tools. The properties are discrete 
composition, algorithmic relationships, exogenous control and scalability. 

2.1 Discrete Composition

The underlying substructures of CASs are discrete matrices of elements, treated as 
independent entities, operating in parallel. Despite the discrete nature of these systems 
at the local scale, they are able to exhibit global behaviors with varying degrees of 
continuity. The trait of having a discontinuous substructure, but varying continuity 
at the level of superstructure, is one of the behaviors that make CASs suitable for 
translation into architecture. This trait provides an analog to the way in which 
architecture is produced; assembled from discrete elements – either programmatic 
(rooms and zones) or structural (beams and columns) – that define spaces with 
varying degrees of continuity (e.g. spatial, programmatic, acoustical, environmental).

2.2 Algorithmic Relationships 

The behavior of a CAS is prescribed by sets of rules and algorithms that dictate 
the relationships between elements within the system.  The relationships between 
elements in a CAS are iteratively re-evaluated based on these rules, providing the 
means for the system to adapt to internal and external changes. The clear definition of 
relationships between elements, and the reiteration of those relational rules over time, 
finds an analog in the design process – where design intentions are described in terms 
of relationships (privacy, lighting, proximity), and the final product emerges from the 
continual reiteration and refinement of these relationships.

 

A specific example of this can be seen in the computational algorithm described as 
flocking. Basic flocking systems (Figure 1) define a set of desired relationships between 
elements in a flock (such as ideal distance between elements and preferred position 
relative to other elements) and attempt to maintain these relationships by continually 
readjusting the positions of each element (Reynolds, 1987). When the rules of proximity 
and position are applied to a group of elements they exhibit complex adaptive behavior 
similar to a flock of birds. This simple set of rules of proximity and position can find 
application in architecture, for example, as rules for positioning of programmatic or 
structural elements.   

2.3 Exogenous Control (Contextual Awareness)

Along with the ideas of internal constraints, many CASs have the capacity to react to 
exogenous control, which in architectural terms can provide mechanisms for contextual 

Figure 1 -  Paths described by the motion 
of flocking particles .



and environmental awareness, and influencing the system to incorporate additional 
design intentions.  CASs have two primary mechanisms for reacting to environment 
and context – initial state definition and avoidance behavior.  

Since all CASs operate on a deterministic set of rules, the initial state of the system 
ultimately determines its outcome.  Thought of in this way, the outcome of a CAS can 
be seen as a registration of the rules upon a particular initial state. With a simple 
CAS, such as Cellular Automata, the entire range of possible outcomes for every rule 
from a single initial state can be mapped (Wuench, Lesser 1992).  In an architectural 
application the initial state can be defined in terms of the environment, and the 
behavior of the CAS would be a direct expression of the relational rules of the system 
within that environment.

Along with the ability to register the initial state of their environment, CASs can react 
to external change via mechanisms such as avoidance behavior. This behavior is 
comprised of basic mechanisms that monitor the incremental growth of a CAS for 
collisions with objects or fields in the environment and provide for additional reactions. 
If elements in the system are currently on a collision course the monitoring mechanism 
signals for new behavioral rules to be invoked that react to the potential collision. 

The obvious architectural implication of the collision detection and avoidance logic 
is to install the system with an awareness of surrounding buildings and landscape. 
However, the behavior can also be applied to more abstractly zoned volumes within the 
systems surrounding context as well. The growth of a system could respond to zoning 
envelopes, acoustical envelopes, sun and shade volumes, view corridors, program 
areas, and any other abstract constraints that can be represented volumetrically.

Collision detection can be further extended as a mechanism for control by inverting the 
logic of avoidance behavior so that the collision detection mechanism can be used as 
a tool for searching out attractive areas of an architectural context. If the avoidance 
behavior were to be changed to tend towards potential collision instead of away, the 
morphological tendencies of the CAS will grow towards specific areas in a site that are 
designated as desirable. Furthermore the volumes of desirability, and undesirability, 
can be weighted in influence to produce a multivalent map of context.

2.4 Scalability

Many CASs exhibit a fractal behavior - the behavior of a small number of elements is 
congruent to the same system with exponentially more components. This scalability 
of behavior has two benefits to the study and implementation within architectural 
practice. The first is one of study and testing; since the behavior of a large system 



is similar to that of a small system, methods for design can be modeled in a limited 
capacity and still translate to the larger scale of a building or urban project. The 
second benefit of the scalability of CASs is their potential to be nested fractally. Their 
scalability makes them essentially scale-less; a particular set of rules that functions 
well as a global organization system could be used at the scale of an urban project, 
while each ‘cell’ could in turn be filled with a smaller version of a CAS with a detailed 
behavior at the scale of building or dwelling unit.

 

3 STRUCTURAL SYSTEMS

The characteristics of the organizational strategy outlined above, and the diverse range 
of possible complex forms that may result, require a structural solution with similar 
geometric and algorithmic traits. Our research focused upon the three-dimensional 
differential space-truss. 

The traditional space-truss is a lattice structure of standard elements, typically leading 
to architecture of regular geometrical forms, as in the geodetic domes of Buckminster 
Fuller and projects such as I.M. Pei’s Javits Convention Center in New York. The 
traditional space-truss employs standard elements because of constraints of design, 
analysis and fabrication – constraints now surmountable through computer-based 
techniques. The differential space-truss uses non-standard elements; by allowing 
each element to be unique it can take on complex three-dimensional curvilinear form 
as well as basic linear geometry. 

During our research we built and tested several scale models of three-dimensional 
differential space-trusses with non-uniform elements (Figure 2). The manufacturing 
of the structural elements requires the use of Computer Numerically Controlled (CNC) 
fabrication techniques. The specific biases and limitations of these construction 
methods can be built into the relational rules of the CASs as further means of control. 
The differential space-truss has three major traits that match many of the behaviors 
and properties of CASs: discrete composition, lattice geometry and scalability.

3.1 Discrete Elements

Space-truss systems are comprised of two basic components, linear struts and 
connecting nodes; through the manipulation of these two types of elements the system 
can yield a diverse range of complex three-dimensional forms. The fluid nature in 
which a space-truss can transition between curvilinear form and linear geometry 
is similar to that of monolithic structural systems such as cast concrete, yet it is 
constructed from repetitive discrete elements. Its range of formal expression, coupled 

Figure 2 - Fabricated prototype of 
differential space-truss.



with its discrete composition, makes the space-truss an ideal structural expression for 
the organizational strategies of CASs. 

3.2 Lattice Configuration

The lattice configuration of a space-truss, a continuous network of nodes and struts, 
allows it to effectively behave as a monolithic system; load forces passing through 
the system on a global scale as if it were a uniform structure. The overall structural 
capacity emerges from the configuration of the discrete elements and their inter-
connections, mimicking almost identically the emergent behavior of the coordinated 
elements in the CAS. 

3.3 Scalability  / Micro-scale Components

Structurally, the space-truss has no predetermined scale, capable of functioning 
equally with struts the length of 10 meters as with struts only 10 centimeters.  The 
economies of scale behind traditional construction have led to the implementation 
of space-trusses only at a large scale, a single strut commonly measuring more 
than a meter in size. The use of CASs, which are capable of managing innumerable 
discrete elements, especially if they are coupled with CNC fabrication techniques and 
roboticized assembly methods, can allow the space-truss to be implemented at a finer 
scale, giving more adaptability and greater range of formal expression.

4 Case Study 1: one-dimensional Cellular Automata

We have performed several case studies applying CASs to architectural form; two 
of which are documented in this paper. Both case studies described here employ 
algorithms that are categorized in a subclass of CAS called Cellular Automata.  The 
two specific examples are one-dimensional Cellular Automata (Wolfram, 2002) and 
an adaptation of Conway’s Game of Life (Gardner, 1970). These studies focused on 
investigating ways of formally manifesting the behavior of the CASs via appropriate 
geometric systems and the differential space-truss structure. 

The case studies were produced by writing custom software plugins for Maxon’s 
Cinema4D and Alias|Wavefront’s Maya. The software plugins used the CAS rules 
to produce three-dimensional surfaces and lattice structures. The software was 
developed to generate forms that are able to be easily realized using CNC fabrication 
techniques. 



4.1 Cellular Automata Rules

The structure of a Cellular Automata is a one-dimensional array of elements with 
variable states – typically represented as a line of black and white squares. The array 
is manipulated via a set of rules; in the studies done here we used 3-Neighbor Cellular 
Automata, which have only eight rules. The rules govern how the states of the individual 
elements change over time. For each discrete moment in time, the state of each 
element in the system is analyzed and changed based on the rules. An example of a set 
of rules is show in Figure 3. Typically the behavior of a Cellular Automata is visualized 
as a time-series plot, showing snapshots of the state of the one-dimensional array of 
elements at sequential moments in time all together as a two-dimensional grid.

4.2 Outcome

In translating the behavior of the one-dimensional Cellular Automata system to 
architectural design, the behavior of the system was treated as a series of instructions 
for growth in three-dimensions. Instead of interpreting the states of the elements 
within the Cellular Automata as white and black, the states mapped to angular 
directions for the development of a space-truss lattice. 

Forms were generated by incrementally growing a space-truss structure where each 
new element within the structure was placed relative to the previous element based 
on the changing state of the Cellular Automata system.  We discovered the forms with 
the most potential for architectural application resulted from the coupling of changes 
in state within the Cellular Automata and changes in angle within the growth of the 
space-truss structure. As each element was added to the truss, the angle of the new 
element relative to the previous element was dictated by the current state of the 
Cellular Automata system.  A Cellular Automata pattern being translated to different 
surface configurations through the association between Cellular Automata states and 
various angles is illustrated in Figure 4.

The Cellular Automata system was further studied by augmenting it with rules for 
exogenous responsiveness and tectonic/structural intelligence. An additional layer of 
behavior was added to the basic behaviors employed in the previous examples, giving 
it collision detection so it could respond to boundaries and environmental constraints. 
Figure 5 illustrates the results of the collision detection in a simple formal study.

Along with the layer of collision detection and responsiveness a third system of 
behaviors was added to install proximity detection between elements. Each element 
within the Cellular Automata system was given additional instructions that controlled 
its distance relative to it neighbors during the generation of the lattice structure 
(Figure 5). This behavior attempted to keep the spacing between elements at an 









optimal distance, one that corresponded to an optimal relative length for a structural 
element in a differential space-truss. The mechanisms employed in maintaining 
optimal distance is similar to those used in the flocking behavior described earlier. 

A part of the research we developed a software plugin for Maxon’s Cinema4D to 
generate structures based on the parameters described above. The plugin has two 
major components, one titled ‘Behavior’, for controlling the Cellular Automata behavior 
and a second titled ‘Renderer’ for controlling the interpretation of that behavior into 
form.  The two components are reflected in the interface shown in Figures 6 and 7 
below. The Cellular Automata rules, iterations and initial state as well as its flocking 
behavior are all controlled via the Behavior interface. The Renderer portion allows 
a designer to associate the different states of the Cellular Automata with different 
angular directions for the interpretation into form, as shown in figure 4.  The collision 
detection and avoidance behavior is integrated into the system so that any shapes 
defined within the modeling environment are treated as context and avoided as the 
Cellular Automata structure generates itself. The plugin generates both a surface 
model as well as a structure of lines and curves; these curves can provide a basis for 
the generation of laser cut structural models.

We ran several tests of hypothetical scenarios, deploying Cellular Automata systems 
with specific rule sets within different urban and rural contexts. Figure 8 shows the 
results of one of these tests. In this test a pair of Cellular Automata, tuned towards 
different degrees of transparency and opacity, were deployed in an urban infill lot. 
The Cellular Automata plugin we developed generates ruled surfaces, which can be 
optimized for fabrication with linear tools such as laser cutters. Generating surfaces 
with a rule-based system that incorporates requirements of the fabrication method 
is similar to that employed in the Morphogenetic Surface Structures project from the 
Emergent Design Group (Testa, O’Reilly, 1999).

5 CASE STUDY 2: Conway’s Game of Life Variant

5.1 System Rules

Conway’s Game of Life is a two-dimensional Cellular Automata a matrix of elements 
with variable states in two directions. The matrix of elements is typically arranged as a 
grid of black and white squares, and a set of four rules is used to change the states of 
the elements at each discrete moment in time. The rules for changing each element are, 
as with one-dimensional Cellular Automata, based on the immediate context of each 
element. However, since there are many more possible configurations of neighboring 
elements than in a one-dimensional Cellular Automata, the rules can operate on a 

Figure 6 & 7 – Interface components 
for Behavior and Renderer control in 
the Cellular Automata system



Figure 8 -  Deployment of a 
Cellular Automata architectural 
design system in an urban infill 
context







more qualitative level. For instance, the typical rules describe conditions of loneliness, 
over-population, stasis and reproduction. These rules are shown in Figure 9.  

To adapt Conway’s Game of Life for architectural application, we derived a variant of 
the rules and system that works on a three-dimensional matrix of elements. Figure 10 
shows how the Game of Life can be thought of as a three-dimensional system. In this 
case study we extended the system of Conway’s Game of Life so that its implementation 
is not limited to a Cartesian spatial matrix so it can produce spatial conditions that 
are complex and more specific to the structural morphology of the differential space-
truss.

5.2 Outcome

In experiments with our variant of Conway’s Game of Life (Conway Variant) we sought 
to make the ideas of contextual awareness and structural/tectonic logic explored in the 
one-dimensional Cellular Automata more central to the generation of form.  The basic 
rules of the system, those of loneliness, overcrowding and reproduction, integrate 
contextual awareness, without layering on additional behavioral logic as was done 
in the Cellular Automata studies. The architectural context is described in the same 
manner as the systems elements, allowing the growth of the elements to react to 
boundaries and environmental constraints.  The forms generated by the system also 
act as contextual constraints for the next phase of growth, allowing the system to limit 
its growth in a more controlled manner.

To embed structural and formal logic into the system, studies were made in using 
space-filling geometries other than the typical 90-degree grid (Nooshin, H., Disney, P. 
L., and Champion, O. C, 1997). With one-dimensional Cellular Automata and Conway’s 
Game of Life, the system is typically represented as a grid of square tiles. In moving 
into three dimensions it is simple to mimic the behavior of these systems by extending 
those square tiles into three dimensions as a matrix of cubes, giving extremely limited 
formal possibilities and imparting no structural logic to the system. Instead, we looked 
towards more complex and variable space-filling geometries, such as the geometry of 
cells and crystals (Pearce, 1990), that matched more effectively the formal logic of the 
differential space-truss.  Coupling different space-filling geometries with variants on 
the rules of Conway’s Game of Life we were able to produce a diverse range of possible 
forms including complex spatial and structural configurations.

As with the Cellular Automata case study, we developed a custom plugin for the 
Conway Variant case study that would generate sample structures.  The plugin 
provides an interface for controlling all the aspects of our variant of Conway’s Game 
of Life rules such as ‘reproduction’ and ‘overcrowding’. The plugin interface is pictured 
in Figure 11. Instead of operating within a simple Cartesian grid, as shown in Figure 
10, the system grows based on a spatial morphology of a differential space-truss. 



As elements within the Game of Life, the plugin uses ‘nodes’ within a space-truss. 
However, instead of being located within a fixed three-dimensional grid the position 
and location of these nodes are determined by the ‘angle’ and ‘length’ parameters of 
the plugin. As the system grows, each node in the structure spawns new nodes and 
struts, or ‘kills’ them off, based on the rules of reproduction and overcrowding from our 
variant on the Game of Life.

Figure 12 shows a highly constrained Conway Variant system deployed with constraints 
that limit its growth to a primarily vertical direction. The rules and space-filling 
geometry used produce a variation on a typical office tower structure with much more 
structural redundancy and spatial variety at the scale of the individual floor and unit. 

Figure 13 shows the same system used to produce the tower, but deployed with a 
different initial context and geometric structure. With these different parameters the 
system produces a series of punctured domes with varying degrees of enclosure.

6 FUTURE WORK

We intend to further extend the rudimentary explorations in Autonomic Architecture 
along several different trajectories.

6.1 Geometry

The use of various space-filling geometries in Conway Variant produced a range of 
interesting formal results, opening up several research opportunities. As one portion 
of our continued research we propose to investigate more rigorously the logic of these 
different spatial patterns and their formal range. We also hope to investigate these 
space-filling geometries combinatorially, testing applications of combinations of the 
geometries within a single structure to produce structures supportive of different 
programs and uses.

The association between ideas of structure and geometry in our case studies has 
remained primarily formal; in further investigations we plan to investigate “real-
world” collaborative applications with structural engineers and architectural firms. 
There has been interest expressed within the community of practicing architects to 
utilize our current prototype for designing building components.

6.2 Fabrication

Figure 11 - Software interface for 
generating Game of Life structures

Figure 12 - Tower generated 
with an architectural 
design algorithm based on 
Conwayʼs Game of Life.



Figure 13 - Structure generated 
within a landscape using a design 
algorithm based on Conwayʼs Game 
of Life.



The application of CASs in the manner we propose offers the ability to control the 
size and scale of every architectural element within a structure with mathematical 
precision, as it is designed. This degree of control would necessitate further research 
in the coupling of Computer Numerically Controlled fabrication techniques with the 
morphology of the architectural design system. As part of our continued research we 
intend to develop fabrication techniques for a differential space-frame truss that 
would allow the limitations of the fabrication and construction process to be added as 
control parameters to the design system.

6.3 Algorithms

The CASs explored in our case studies, one-dimensional Cellular Automata and Conway 
Variant, use some of the simplest of the CAS algorithms. In further research we intend 
to pursue additional CAS algorithms based on the following criteria:

The CAS systems we have employed so far use only two states within their organizational 
structure, other algorithms such as Turing Machines and 3-state Cellular Automata 
are capable of supporting multiple states. This multi-state structure could provide for 
additional behaviors relating to program, site, and aesthetics – factors that have not 
yet been addressed in case studies.

The systems used in the case studies thus far have had limited capacity for testing 
local conditions. For elements of both the one-dimensional Cellular Automata and 
the Conway Variant behaviors were based solely upon the state of each element’s 
immediate neighbors. We propose to pursue methods of building behaviors based on 
an awareness of more than the immediate proximity, using methods similar to those 
developed for Neural Networks. 

The environment and context of the CASs in the case studies have been described 
as fixed, not changing over time. To better simulate real-world applications of these 
systems, as well as to encourage evolution within the algorithms, we propose to 
pursue methods of constructing and testing these systems in continually varying 
environments.
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